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Introduction


What is inpystem

inpystem is an open source Python library which provides tools to reconstruct partially sampled 2D images as multi-band images.

inpystem’s core is a set of reconstruction techniques such as interpolation, regularized least-square and dictionary learning methods. It provides a user interface which simplify the use of these techniques.

inpystem is mainly at the destination of the microscopy community so that it highly depends on the good library HyperSpy [https://hyperspy.org/].

This library was originally developed by its creator Etienne Monier to handle EELS data and develop reconstruction algorithms. This was proposed afterwards to the microscopy community as a tool.




About the developer

This library is developed by Etienne Monier [http://monier.perso.enseeiht.fr/], a French PhD student.

His research interests are in new methods and algorithms to solve challenging acquisition problems encountered in the acquisition of multi-band microscopy images. In particular, he is interested in acquiring high-SNR Electron Energy Loss Spectroscopy (EELS) images with extremely low beam energy to prevent destruction of sensitive microscopy samples. His goal is to provide to the EELS community precise algorithms to detect rapidly the presence of a chemical element inside a sample to reduce irradiation as much as possible. Such problem requires signal processing methods, such as convex optimization and proximal splitting methods.







          

      

      

    

  

    
      
          
            
  
Installing inpystem


With pip

inpystem is listed in the Python Package Index [https://pypi.org/]. Therefore, it can be automatically downloaded and installed with pip. You may need to install pip for the following commands to run.

Install with pip:

$ pip install inpystem








Install from source

When installing manually, be sure that all dependences are required. For example, do:

$ pip install numpy scipy matplotlib hyperspy scikit-learn scikit-image





Be aware that the scikit-image package versions is above 0.16.


Released version

To install from source grab a tar.gz release from Python Package Index <https://pypi.org/> and use the  following code if Linux/Mac user:

$ tar -xzf inpystem.tar.gz
$ cd inpystem
$ python setup.py install





You can also use a Python installer, e.g.

$ pip install inpystem.tar.gz








Development version

To get the development version from our git repository you need to install git. Then just do:

$ git clone https://github.com/etienne-monier/inpystem
$ cd inpystem





Then, perform one of the following commands:

$ pip install -e .
$ python setup.py install













          

      

      

    

  

    
      
          
            
  
Getting started

In this documentation, we will assume that the reader can write some command line or jupyter python.


Starting inpystem in python

inpystem can be imported in python just as any python package.

>>> import inpystem





In addition to inpystem, the HyperSpy [https://hyperspy.org/] library is required to construct the inpystem objects as some arguments should be HyperSpy data.

>>> import hyperspy.api as hs





Last, note that most of the scientific python applications require libraries such as numpy and matplotlib. It is recommended to import them as well.

>>> import numpy as np
>>> import matplotlib.pyplot as plt








The base: What is a STEM acquisition here ?

A STEM acquisition here is the result of two main informations:


	The scan pattern which is basically the array of the visited pixels indexes,


	The data which are the values of the data at the sampled pixels.




Be aware that the inpystem library can handle 2D (e.g. HAADF data) as 3D data (e.g. EELS data). The data that are acquired at a spatial position (or pixel) can then be a single value (for 2D) or a spectrum (for 3D).




The first basic object is the scan

The basic object to understand is the Scan class. This is an object which stores the scan pattern. To create one, the data spatial shape and the path indexes should be given.

>>> shape = (3, 4)  # This is the spatial shape of the data : 3 rows, 4 columns.
>>> path = [ 1,  3,  6,  4,  7, 11,  8,  0]  # These are the sampled pixels indexes.
>>> scan = inpystem.Scan(shape, path)
>>> scan
<Scan, shape: (3, 4), ratio: 0.667>






Note

Note that in this documentation, the matrix indexes are denoted in the rows major order (which is the order chosen in python).

It mean that if the spatial dimensions are (M, N), then the i’th index refers to the pixels which coordinates are (i // N, i % N). In the above example, the first visited pixel is the second pixel of the first line.

Be careful also that python coordinates begin at 0, not 1.



Additionally, the Scan object allows you to select a fraction of the scan pattern. Let us consider a fully sampled acquisition which spatial shape is (M, N), then only 10% of the pixels can be selected by setting the ratio argument to 0.1. This argument can be modified after the object definition.

Thought, be careful in case the acquisition is partially sampled (or example, if only r*M*N pixels were acquired, with r below 1). In such case, if ratio is below r, then only ratio*M*N pixels are kept. If ratio is above r, then all r*M*N pixels are kept.

>>> scan
<Scan, shape: (3, 4), ratio: 0.667>
>>> scan.ratio = 0.8  # Here, we ask for a ratio which is higher than 0.667.
WARNING:root:Input ratio is higher than higher maximal ratio (0.667). Ratio is set to the maximal value.
>>> scan.ratio = 0.5  # Here, the value is correct.
>>> scan
<Scan, shape: (3, 4), ratio: 0.500>

>>> scan = inpystem.Scan(shape, path, ratio=0.5)  # The ratio can be given at initialization.
>>> scan
<Scan, shape: (3, 4), ratio: 0.500>
>>> scan.ratio = 0.667  # But don't worry, the additional visited pixels are not lost.
>>> scan
<Scan, shape: (3, 4), ratio: 0.667>





In fact, the pixels that are given at initialization of scan are not lost when a below ratio is given as the currently visited index are stored in path attribute while the path_0 attribute stores all pixels at initialization.

>>> scan = inpystem.Scan(shape, path, ratio=0.5)  # The ratio can be given at initialization.
>>> scan
<Scan, shape: (3, 4), ratio: 0.500>
>>> scan.path
.. code-block:: python
>>> scan.path_0
array([ 1,  3,  6,  4,  7, 11,  8,  0])
>>> scan.ratio
0.5






Note

The Scan object data can be represented with a sampling mask \(\mathbf{M}\) defined as


\[\mathbf{M}_i =
\begin{cases}
1, 
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Initializing the data


How to initialize the scan pattern

The scan pattern can be initialized using three recipes:


	initialize it with the shape and path values (see The first basic object is the scan),


	initialize it with a Numpy or HyperSpy file,


	initialize it as random sampling.




Recall that a path which is initialized with the data shape only is set to be a full raster (i.e. line-by-line) scan.

Recall also that all scan initialization functions allow to define a ratio argument (see The first basic object is the scan).


Initialize it with a file

The scan pattern can be initialized with a numpy .npz file which should store:


	m (resp. n) which is the data number of rows (resp. columns),


	path which is the path argument




To that end, one should use the from_file() method of Scan.

>>> import numpy as np
>>> m, n = 50, 100
>>> path = np.random.permutation(m*n)
>>> data_2_save = {'m': m, 'n': n, 'path': path}
>>> np.savez('my_scan.npz', **data_2_save)  # This saves the Scan numpy file

>>> inpystem.Scan.from_file('my_scan.npz', ratio=0.5) # This loads the numpy scan file.
<Scan, shape: (50, 100), ratio: 0.500>








Initialize it as random sampling

The sampling scan can last be initialized with the random() method of Scan. One should just give the spatial data shape (m, n). In addition to the ratio argument which can also be given, the user can give a seed to the method to have reproducible results.

>>> inpystem.Scan.random((50, 100))
<Scan, shape: (50, 100), ratio: 1.000>
>>> scan = inpystem.Scan.random((50, 100), ratio=0.2)
>>> scan
<Scan, shape: (50, 100), ratio: 0.200>
>>> scan.path[:5]
array([4071,  662, 4168, 3787, 4584])

>>> scan = inpystem.Scan.random((50, 100), ratio=0.2, seed=0)
>>> scan.path[:5]
array([ 398, 3833, 4836, 4572,  636])
>>> scan = inpystem.Scan.random((50, 100), ratio=0.2, seed=0)
>>> scan.path[:5]  # This shows that setting the seed makes the results reproducible.
array([ 398, 3833, 4836, 4572,  636])










Construct inpystem data manually

As explained in The result is inpystem data, the inpystem data is composed of a Scan object which defines the sampling pattern and the HyperSpy data which stores the data. Once both have been defined, the inpystem structure can be defined by hand.

>>> inpystem_data = inpystem.Stem2D(hsdata, scan=scan_object)








Construct inpystem data from a Numpy array

In case your image is a numpy array, one should define the HyperSpy data before creating the inpystem data.

>>> import numpy as np
>>> import hyperspy.api as hs
>>> shape = (50, 100, 1500)                 # This is the 3D data shape
>>> im = np.ones(shape)                     # This is our image (which is 3D this time).
>>> scan = inpystem.Scan.random(shape[:2])    # The scan is created (be careful to have 2-tuple shape).
>>> hsdata = hs.signals.Signal1D(im)        # Here, hs data is created from numpy array.
>>> inpystem.Stem3D(hsdata, scan)
<Stem3D, title: , dimensions: (100, 50|1500), sampling ratio: 1.00>





Well, the problem here, which is the same as for numpy-based HyperSpy data, is that both axes_manager and metadata are empty. To correct that, it is hygly recommended to use a configuration file. That’s the subject of next section.




Construct inpystem data from a configuration file

As explained in Loading your data is faster, inpystem can load data from a .conf configuration file. This is loaded by using the load_file() function (or the load_key() function if the configuration file is in the data path). To that end, a configuration file gives to inpystem all important informations.

First, the configuration file is separated in three main sections (case-sensitive, caution !):


	DATA 2D for 2D data,


	DATA 3D for 3D data,


	SCAN for the scan pattern.




Among these sections, only one of DATA 2D and DATA 3D sections is required (if no data is given, inpystem can not do anything …). And inside this section, the only key which is required is file which specifies the location of the data file (numpy .npy or .dm4 or all other file which is allowed by HyperSpy) relative to the configuration file. One info: contrary to sections wich are case-sensitive, keys are not.

In case no file key is given inside a SCAN section, the load_file() function creates automatically a random scan object (based on its scan_ratio and scan_seed arguments). Otherwise, a scan file (numpy or dm4/dm3) is loaded (the scan_ratio argument of load_file() can still be given).

Hence, a basic configuration file could look like this.

#
# This is a demo file.
# This text is not used, that's a commentary.
#

[3D DATA]
# This section defines all info about 3D data
File = eels_data.dm4

[SCAN]
# This section defines all info about scan pattern

# If the following line is commented, the scan pattern would be random.
FILE = scan.dm4





In the special case where the data file is a numpy .npy file, one could define additional information to fill the HyperSpy axes_manager attribute. To that end, a set of keys can be given inside the corresponding section. These keys should be like axis_dim_info where:


	dim is the axis index (0 for the x axis, 1 for the y axis and 2 in case of 3D data for the spectrum axis),


	info belongs to name, scale, unit and offset.




As an example, the previous section data axes_manager should look like this.

>>> data = inpystem.Stem3D(hsdata, scan)
Creating STEM acquisition...

>>> data.hsdata.axes_manager
<Axes manager, axes: (100, 50|1500)>
            Name |   size |  index |  offset |   scale |  units
================ | ====== | ====== | ======= | ======= | ======
     <undefined> |    100 |      0 |       0 |       1 | <undefined>
     <undefined> |     50 |      0 |       0 |       1 | <undefined>
---------------- | ------ | ------ | ------- | ------- | ------
     <undefined> |   1500 |        |       0 |       1 | <undefined>





If the numpy array is save inside a directory with the following configuration file, this issue would be fixed.

#
# This is a demo file to define Numpy data axes_manager.
#

[3D DATA]
file = numpy_data.npy

# Infos for the axes_manager
axis_0_name = x
axis_1_name = y
axis_2_name = Energy loss

# Some more info for the energy loss axis
axis_2_offset = 4.6e+02
axis_2_scale = 0.32
axis_2_unit = eV

# No scan section, I want a random scan.





And the data would be loaded by simply typing this.

>>> inpystem.load_file('my-nice-file.conf', scan_ratio=0.5, scan_seed=0)








Some example data for fast testing

The package is delivered with some toy data for testing which are not provided inside the package itself due to the high data size. Please download it at the github project page [https://github.com/etienne-monier/inpystem] under location DATA/ and copy it to your data path (see Loading your data is faster). These data can be called afterwards with the load_key() function.

The three example data are called with the following keys:


	'HR-sample': this is a real atomic-scale HAADF/EELS sample,


	'HR-synth': this is a synthetic EELS image generated to be similar to 'HR-sample',


	'LR-synth': this is a synthetic low-resolution EELS image.




The first data were acquired in the context of the following works [AZWT+19], [APLML+18]. Authors of these works would like to acknowledge Daniele Preziosi for the LAO-NNO thin film growth, Alexandre Gloter for the FIB lamella preparation and Xiaoyan Li for STEM experiments.

The two last data were generated to compare reconstruction methods in the context of STEM-EELS data inpainting [AMonierOberlinBrun+18]. The high-resolution works were submitted.
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Correcting data


Introduction

Sometimes, you can face a situation where your data has outliers, i.e. data that are abnormal because of local dysfunctions. The data were acquired, but their value are not normal. In such case, you can wish to


	purely remove columns / rows / bands,


	correct particular dead pixels by replacing their value by correct ones.




For the dead pixels, their new value are set to a mean over the nearest correct sampled positions.

In the below example, the user wants to remove the red rows, the green columns and correct a dead pixel in blue.


[image: ../_images/correction.png]
Correction with a single image






Correcting data manually

This is realized easily by using the correct() method of the data object. This only requires


	slices objects that define the rows and columns to keep (and the bands in case of 3D data),


	the position of dead pixels.





Note

Let us recall what a slice object is. When you define a numpy array A of shape (m, n), you can access columns and rows using e.g. A[1:2:5, :2]. In each direction, you specify the start, stop and step values.

For example, writing A[1:, :] mean you want to select all rows from row 1 to the last row m. This is equivalent to write A[slice(1), :]. In fact, a slice object just defines, for a direction, the start, stop and step values. Let’s have some examples:


	1: is equivalent to slice(1),


	:10 is equivalent to slice(None, 10),


	::10 is equivalent to slice(None, None, 10),


	2:10 is equivalent to slice(2, 10),


	: is equivalent to slice(None).






For the above example, one should write the following code.

>>> data
<Stem3D, title: Test, dimensions: (|11, 11), sampling ratio: 0.20>
>>> data.correct(rows=slice(1, 9), columns=slice(2, 10), dpixels=[6*11+5])
Correcting STEM acquisition...

>>> data
<Stem3D, title: Test, dimensions: (|8, 8), sampling ratio: 0.20>








Correcting data with the configuration file

A lot of information can be given to inpystem through the configuration file. To pass correction info to the load functions, all you need is to define slices inside the corresponding 2D DATA or 3D DATA sections. For this, use the following keys: rows, columns, bands and dpixels. The slice should be written as for numpy array selection (1:-60). Let’s illustrate is with the configuration file of the HR-sample example image.

[2D DATA]
file = spim4-2-df-manualy aligned image.dm4
columns = 15:-60
dpixels = [9384, 8468]

[3D DATA]
file = spim4-2_ali.dm4
columns = 15:-60
bands = 90:
dpixels = [9384, 8468]






Note

Contrary to the correct() method which allows slices, the configuration files require literal slices such as 1:-50.

One other main difference is that slices objects do not accept negative values while the configuration files values are parsed and accept negative values. As a consequence, to tell inpystem you just want to keep all rows but the first one and the five last ones, you should write slice(1:m-1) (where m is the number of rows) for the correct() method while the configuration file would accept 1:-5.
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Restoration

Welcome to the main page of this documentation. The inpystem library is nothing else than a pluggin to HyperSpy to allow reconstruction.


Some words about pre and post-processing steps


For 2D data

2D data are centered and normalized before reconstruction. The reason is to avoid highly variable reconstruction methods parameters.

# data numpy array is ready to be reconstructed.
#

# Let's get data mean and standard devition.
data_mean, data_std = data.mean(), data.std()

# Let's center and normalize the data
data_ready = (data - data_mean) / data_std

#
# Reconstruction is performed
#

# Let's perform the inverse transformation
data_out = reconstructed_data * data_std + data_mean

# data_out is returned








For 3D data

3D data have the save pre and post-processing as for 2D data. But in addition to centering and normalization, a thresholded principal component analysis (PCA) is performed to reduce the data dimension along the bands axis and to ensure the low rank assumption. This one states that most multi-band data result in the mixing of R basic data with R small compared to the data dimension).

The default behavior is to perform PCA with an automatically estimated threshold (which can be really over-estimated in case of data starvation situations, i.e. if you have almost as many samples as the data size). Though, the user can set both parameters and choose if PCA should be performed and which value the threshold should have.

To sum up, the steps are:


	perform thresholded PCA if required,


	center and normalize the data,


	perform reconstruction,


	re-set the data mean and standard deviation values,


	perform inverse PCA.









How to reconstruct my data

To reconstruct the data, the user should use the restore() method. Both Stem2D and Stem3D classes need the following arguments to restore their data:


	method which is the method name (default is 'interpolation'),


	parameters which should be a dictionary with input parameters,


	verbose which allows the method to display information on the console (default is True).




In addition to these common parameters, the Stem3D class has the foolowing inputs:


	PCA_transform which controlls the PCA execution (defualt is True for PCA execution),


	PCA_th which states the PCA threshold.




A common reconstruction task will then look like this.

>>> data = inpystem.load_example('HR-sample', ndim=2, scan_ratio=0.2)
Reading configuration file ...
Generating data ...
Creating STEM acquisition...
Correcting STEM acquisition...

>>> rec, info = data.restore()
Restoring the 2D STEM acquisition...
-- Interpolation reconstruction algorithm --
Done in 0.01s.
---
>>> rec
<Signal2D, title: HR-sample, dimensions: (|113, 63)>
>>> info
{'time': 0.011758089065551758}








The reconstruction methods available

All you need to know for each method is:


	what the method do (of course you need to know a little about it),


	his nickname to give to restore(),


	his parameters,


	what informations are returned.





Restoration cheet sheet

Additional info in case PCA_transform is True is PCA_info which stores the following keys:


	H: the truncated PCA basis,


	PCA_th: the PCA threshold,


	Ym: the data mean.







Interpolation

The interpolation method calls linear, cubic or nearest neighbor interpolation.

The method to give to the restore() method is interpolation. The associated function is resp. interpolate().

The input parameters are:


	method: (optional, str) The interpolation method (among nearest, linear and cubic). Default is nearest neighbor.




The output dictionary stores the following informations:


	time: the execution time (in sec.),


	PCA_info: in case of 3D data with PCA pre-processing, it stores info about PCA.







L1

This regularized least-square method solves the following optimization problem:


\[\gdef \x {\mathbf{x}}
\gdef \y {\mathbf{y}}
\hat{\x} = \mathrm{arg}\min_{ \x\in\mathbb{R}^{m \times n} }
       \frac{1}{2} ||(\x-\y)\cdot \Phi||_F^2 +
       \lambda ||\x\Psi||_1\]

where \(\mathbf{y}\) are the corrupted data,  \(\Phi\) is a subsampling operator and \(\Psi\) is a 2D DCT operator.

The method to give to the restore() method is L1. The associated function is resp. L1_LS().

The input parameters are:


	Lambda: (float) The regularization parameter,


	init: (optional, numpy array) An initial point for the gradient descent algorithm which should have the same shape as the input data,


	Nit: (optional, int) The number of iterations.




The output dictionary stores the following informations:


	E: The evolution of the functional value,


	Gamma: The set of all pixel positions which coefficient in the DCT basis is non-zero,


	nnz-ratio: The ratio of non-zero coefficients over the number of DCT coefficients,


	time: the execution time (in sec.).







Smoothed SubSpace

The 3S algorithm denoise or reconstructs a multi-band image possibly
spatially sub-sampled in the case of spatially smooth images. It is
well adapted to intermediate scale images.

This algorithm performs a PCA pre-processing operation to estimate:


	the data subspace basis \(\mathbf{H}\),


	the subspace dimension \(R\),


	the associated eigenvalues in decreasing order \(\mathbf{d}\),


	the noise level \(\hat{\sigma}\).




After this estimation step, the algorithm solves the folowing
regularization problem in the PCA space:


\[\gdef \S {\mathbf{S}}
\gdef \Y {\mathbf{Y}}
\gdef \H {\mathbf{H}}
\gdef \I {\mathcal{I}}

\begin{aligned}
\hat{\S} 
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Data Visualization


Visualizing the data

As for the HyperSpy data, the data objects Stem2D and Stem3D include a plot() method to display the data.

In addition to this basic function, the Stem3D class implements four other functions:


	plot_sum() which displays the sum of the 3D data along the last axis,


	plot_as2D() which displays the data as 2D data (the navigation direction is the “channel” axis while the data are spatial),


	plot_as1D() which displays the data as 1D data (the navigation directions are the spatial axes while the data is a spectrum, this is the behavior of the default plot() function),


	plot_roi() which considers the data as 1D and enable the user to mean the data over a spatial region-of-interest.







Visualizing the scan sampling mask

As explained in The first basic object is the scan, a Scan object can be represented with its sampling mask \(\mathbf{M}\) defined as



\[\mathbf{M}_i =
\begin{cases}
1, 
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inpystem Developper Guide

Well, for now, this small library is developed by myself. I don’t know yet how much this could be usefull. However, if someone is interested to help me, please let me know at etienne[dot]monier[at]enseeiht[dot]fr.

This section just give some informations about the children classes of Stem2D and Stem3D that helps me to develop algorithms.


Contents:


	Dev data objects






List of todos:


Todo

Maybe enable PCA_th in config file for 3D data.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/inpystem/checkouts/latest/inpystem/dataset.py:docstring of inpystem.dataset.load_file, line 44.)
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Dev data objects

Basically, a signal processing algorithm development aims at testing some method on synthetic (i.e. noise-free) data that has been manually degraded. As the truth image is known, metrics can be computed to test and compare the method.

To that end, two data objects Dev2D and Dev3D have been developed. These are children classes from Stem2D and Stem3D (themselves are children of the basic data structure AbstractStem).


[image: ../_images/uml.png]
A simple UML diagram.



These objects basically work as non-dev data objects:


	they are initialized with data and a Scan object,


	loading them can be done with the same functions as for non-dev data,


	they can be corrected with a configuration file,


	they can be reconstructed using the basic restore() of AbstractStem,


	they can be plotted with the same tools.




Their difference is that:


	noise can be added,


	the results are reproducible,


	new noise can be drawn whenever you want,


	the Dev3D allows you to consider the PCA-transformed data as the base data (this is useful for developing 3D restoration algorithm).





Initialize Dev data


Manually

The Dev data objects could be initialized manually with the same arguments as for Stem2D and Stem3D classes, i.e.:


	hsdata, scan and verbose for Stem2D,


	hsdata, scan, PCA_transform, PCA_th and verbose for Stem3D,




In addition to these arguments, a required input is key which is a small descriptive keyword to help referencing. Other optional inputs are:


	modif_file: an configuration file which is sent to correction function,


	sigma: the desired noise standard deviation in case additional noise is desired,


	seed: the noise seed to have reproducible data,


	normalized: if set to True, the data are normalized at initialization.




>>> stem2d_data = inpystem.load_key('HR-sample', 2)
Reading configuration file ...
Generating data ...
Creating STEM acquisition...
Correcting STEM acquisition...
>>> scan_shape = stem2d_data.scan.shape
>>> scan = inpystem.Scan.random(shape=scan_shape, ratio=0.5)
>>> dev_data = inpystem.Dev2D('my-dev-data', hsdata=stem2d_data.hsdata, scan=scan, sigma=0.5, seed=0)
Creating STEM acquisition...
>>> dev_data
<Dev2D, title: HR-sample, dimensions: (|113, 63), sampling ratio: 0.50>








With load functions

The load_file() and load_key() functions also enable to load development data. To that end, the user just has to use the dev input which is a dictionary. This dictionary should store the desired inputs:


	for 2D data: modif_file, sigma, seed and normalized


	for 2D data: PCA_transform, PCA_th, modif_file, sigma, seed and normalized




>>> dev = {'sigma': 0.5, 'seed': 0}
>>> inpystem.load_key('HR-sample', 2, dev=dev, scan_ratio=0.5, scan_seed=1)
Reading configuration file ...
Generating data ...
Creating STEM acquisition...
Correcting STEM acquisition...
<Dev2D, title: HR-sample, dimensions: (|113, 63), sampling ratio: 0.50>





Note that in case the development data is loaded, the key would be the name of the .conf file (e.g. for my-conf-file.conf, the key would be my-conf-file).






Some words about data storage

Contrary to Stem2D and Stem3D objects, development objects work with numpy techniques (to generate the noise, add it, perform PCA) so that this is the central data to be stored in Dev objects.

More precisely, the data are stored twice or three times under the attributes:


	data which stores the noise-free data,


	ndata which stores the noisy data (in case sigma is None and no noise-corruption procedure was applied, this attribute is None),


	hsdata which stores the data as an HyperSpy data.




The last attribute only exist to send the data into restoration procedures. To display noisy or noise-free data, prefer the two first attributes.




Reproducibility and noise

Inside the data creation procedure, the random effects can come from the scan generation (in case of random initialization) or from the noise generation. For both situations, the seed can be set to get reproducible results. Indeed, the scan seed can be set in the load functions with its scan_seed parameter or directly calling the random() with its seed parameter. The noise seed can be set itself with the seed attribute.


Caution

The seed values are set for the startup procedures. When this is set for the Dev2D class, this seed is set just before drawing the noise matrix for the first time. If the user wants to draw another noise matrix, the seed will not be the same any more. This is the same for the random scans.



To generate a new noise matrix, just use the set_ndata(). To generate a new random scan, just re-run the random() method without the seed argument.




How PCA works for Dev3D

At the Stem3D initialization, the 3D data are fully stored as an HyperSpy data. When the user wants to reconstruct the data, the usual PCA_transform and PCA_th arguments can given. This is passed into the reconstruction algorithms which perform PCA as pre and post-processing steps.

In the case of the Dev3D class, these parameters are given at initialization. If PCA_transform is False, then the full data is stored into the data attribute. The user could choose to perform PCA by giving PCA_transform into the restore() as an argument.

>>> dev = {'sigma': 0.5, 'PCA_transform': False}
>>> data = inpystem.load_key('HR-sample', 3, dev=dev)
Reading configuration file ...
Generating data ...
Creating STEM acquisition...
Correcting STEM acquisition...

>>> data.data.shape
(63, 115, 1510)

>>> outdata, info = data.restore()
Restoring the 3D STEM acquisition...
-- Interpolation reconstruction algorithm --
- PCA transformation -
Dimension reduced from 1510 to 4.
Estimated sigma^2 is 2.76e-01.
Done in 1.27s.
-
Done in 0.05s.
---

>>> info['PCA_info']['H'].shape  # The PCA basis used for restoration
(1510, 4)





In the case of True PCA_transform at initialization, a PCA procedure is executed at initialization and the data (and possibly ndata) data are reduced in the last axis direction. Additional information is stored in the PCA_info attribute. In such case, the user should use the restore() method without giving the PCA_transform argument.

>>> dev = {'sigma': 0.5, 'PCA_transform': True}
>>> data = inpystem.load_key('HR-sample', 3, dev=dev)
Reading configuration file ...
Generating data ...
Creating STEM acquisition...
Correcting STEM acquisition...
- PCA transformation -
Dimension reduced from 1510 to 290.
Estimated sigma^2 is 1.43e+03.
Done in 1.27s.
-

>>> outdata, info = data.restore()
Restoring the 3D STEM acquisition...
-- Interpolation reconstruction algorithm --
Done in 11.12s.
---

>>> 'PCA_info' in info
False






Note

The default behavior for the restore() PCA_transform argument is to take the logical not of the PCA_transform argument given at initialization. If the Dev3D class has been initialized without PCA, then a PCA is applied by default before restoration. If PCA has been required at initialization, then no PCA will be applied at restoration.

Yet, the user can explicitly ask for additional PCA (which is stupid, I agree) or for no PCA at all. Let’s explain it clearly: if you don’t want PCA, say it at initialization and at restoration.




Caution

The two examples above show something important as the estimated PCA threshold is 3 in the case where PCA_transform is not given at initialization and 290 otherwise. This means that both orders do not have the same effects.

If PCA_transform is True at initialization, the PCA transformation is performed before adding noise so that the signal is clear enough to have a high threshold. Besides, the noise is added to the data in PCA space.

If PCA_transform is False at initialization but True at restoration, the noise is added to the full dimension data. Besides, the PCA is applied to noised data so that few principle components get more powerful than noise and the threshold drops.



To handle easily direct and inverse PCA transformations, two methods are given: direct_transform() and inverse_transform(). They both allow the user to perform the same PCA direct/inverse transformation as for the :class:`~.dev.Dev3D` initialization method. These methods accept HyperSpy as numpy data.

These methods incorporate also normalization procedure inside. This means that the direct_transform() method performs also centering and normalization whereas the inverse_transform() inject the standard deviation and the mean back.

>>> import inpystem

# Case with non-PCA-initialized object
>>> dev = {'sigma': 0.5, 'PCA_transform': False, 'normalize': False}
>>> data = inpystem.load_key('HR-sample', 3, dev=dev)
>>> direct_data = data.direct_transform(data.data)  # Performing direct transformation to data
>>> inverse_data = data.inverse_transform(data.data)  # Performing inverse transformation to data
>>> import numpy.testing as npt  # This is to check arrays are equal
>>> npt.assert_allclose(data.data, direct_data)  # Equal
>>> npt.assert_allclose(data.data, inverse_data)  # Equal

>>> dev = {'sigma': 0.5, 'PCA_transform': False}  # Non-normalized here
>>> data = inpystem.load_key('HR-sample', 3, dev=dev)
>>> direct_data = data.direct_transform(data.data)
>>> inverse_data = data.inverse_transform(direct_data)
>>> npt.assert_allclose(data.data, direct_data)  # Error because of normalization
>>> npt.assert_allclose(data.data, inverse_data)  # Equal: direct, then inverse is identity :)

# Case with PCA-initialized object
>>> dev = {'sigma': 0.5, 'PCA_transform': True}
>>> data = inpystem.load_key('HR-sample', 3, dev=dev)
>>> inverse_data = data.inverse_transform(data.data)
>>> direct_data = data.direct_transform(inverse_data)
>>> npt.assert_allclose(data.data, direct_data)  # Equal: direct, then inverse is still identity :)

>>> data.data.shape  # PCA shape
(63, 115, 290)
>>> inverse_data.shape  # True image shape
(63, 115, 1510)
>>> direct_data.shape  # PCA shape
(63, 115, 290)








One word about visualization

The development data visualization works as for non-dev classes. Yet, development data visualization methods accept an additional argument which is noised. This optional argument that is False by default sets which data should be displayed (noise-free data by default or noisy data).
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Full inpystem API documentation

inpystem module.

Description here.


Submodules:


	signals module
	The Scan class

	The Stem classes





	dev module

	dataset module
	Data path functions

	Load functions










Subpackages:


	inpystem.tools subpackage
	inpystem.tools.PCA module

	inpystem.tools.FISTA module

	inpystem.tools.matlab_interface module

	inpystem.tools.dct module

	inpystem.tools.sec2str module

	inpystem.tools.metrics module

	inpystem.tools.misc module





	inpystem.restore subpackage
	inpystem.restore.interpolation module

	inpystem.restore.LS_2D module

	inpystem.restore.LS_3D module

	inpystem.restore.LS_CLS module

	inpystem.restore.DL_ITKrMM module

	inpystem.restore.DL_ITKrMM_matlab module

	inpystem.restore.DL_BPFA module
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signals module

This package defines all sort of classes to handle data for inpystem.


The Scan class


	
class inpystem.signals.Scan(shape, path, ratio=None)

	Scan pattern class.

This class stores the data spatial shape and two copies of the
scan pattern. One of these copies is the initial scan pattern
which is given to the class. At the same time, a ratio
argument can be given to keep only a portion of the available
samples. See Notes for more details.


	Variables

	
	shape (2-length tuple) – The spatial shape (m, n) where m is the number of rows and n is the
number of columns.


	path (numpy array) – The sampling path to be used in the study.


	path_0 (numpy array) – The initial sampling path to be kept in case the ratio is changed.


	ratio (float) – The current ratio value such that path`has size
:code:`ratio*m*n. Changing this attribute automaticaly updates
path.









Note

Consider only r*m*n pixels hve been sampled, then the
path_0 attribute has shape (r*m*n, ) and its elements
lay between 0 and m*n-1.

Meanwhile, if the user wants to consider only ratio percent of
the samples, the ratio argument should be given. The
path attribute would then have shape (ratio*m*n, ). In such
case, path_0[:ratio*m*n] will be equal to
path. Be aware that ratio should be lower than
r.

Each element of these arrays is the pixel index in row major order.
To recover the row and column index array, type the following commands.


	::code:
	i = path // n
j = path % n








	
__init__(shape, path, ratio=None)

	Scan pattern constructor.


	Parameters

	
	shape ((m, n) tuple) – The spatial shape where m is the number of rows and n is
the number of columns.


	path (tuple, numpy array) – The sampling path. See class Notes for more detail.


	ratio (optional, float) – The ratio of sampled pixels. This should lay between 0 (excl.)
and 1. Default is None for full sampling.













	
property ratio

	Ratio getter.


	Returns

	The ratio property value.



	Return type

	float










	
classmethod from_file(data_file, ratio=None)

	Creates a scan pattern object from a data file
(such as .dm3, .dm4 or npz).

In the case of a .npz file, this one should contain the :code:̀’m`,
:code:̀’n` and :code:̀’path` variables which are resp. the number of
rows and columns and the path array.

Concerning the .dm3/.dm4 files, the data storage is specific to
the LPS Lab (Orsay, France) implementation.

An aditional argument :code:̀’ratio` allows you to select only a
given ratio of the sampled pixels. This should lay between 0 (excl.)
and 1.


	Parameters

	
	data_file (str) – The data file path.


	ratio (optional, float) – The ratio of sampled pixels. This should lay between 0 (excl.)
and 1. Default is None for full sampling.






	Returns

	The scan pattern.



	Return type

	Scan object










	
classmethod random(shape, ratio=None, seed=None)

	Creates a random scan pattern object.


	Parameters

	
	shape ((m, n) tuple) – The data spatial shape.


	ratio (optional, float) – The ratio of sampled pixels. It should lay between 0 (excluded)
and 1. Default is None for full sampling.


	seed (optional, int) – Seed for random sampling.
Default is None for random seed.






	Returns

	The scan pattern.



	Return type

	Scan object










	
get_mask()

	Returns the sampling mask.

The sampling mask is boolean and True is for sampled pixels.


	Returns

	mask – The sampling mask.



	Return type

	(m, n) numpy array










	
plot()

	Plots the sampling mask.

White (resp. black) pixels are sampled (resp. non-sampled).












The Stem classes


	
class inpystem.signals.AbstractStem(hsdata, scan=None, verbose=True)

	Abstract STEM acquisition class.

This is an abstract class, which mean you can not instantiate such
object.

It defines the structure for a STEM acquisition object.


	Variables

	
	hsdata (hs BaseSignal) – The acquired STEM data hyperspy object.


	scan (Scan object) – The sampling scan object associated with the data.


	verbose (bool) – If True, information is sent to standard output.
Default is True.









	
__init__(hsdata, scan=None, verbose=True)

	AbstractStem constructor.


	Parameters

	
	hsdata (hs BaseSignal) – The acquired STEM data hyperspy object.


	scan (optional, Scan object) – The sampling scan object associated with the data.
Default is None for full sampling.


	verbose (bool) – If True, information is sent to standard output.
Default is True.













	
correct(rows=slice(None, None, None), cols=slice(None, None, None), bands=slice(None, None, None), dpixels=None)

	Correct deffective data.

Deffective data correspond to:


	Rows to remove at the begging or at the end of the image.


	Columns to remove at the begging or at the end of the image.


	Bands to remove at the begging or at the end of the image.


	Located dead pixels at the center of the image.




In the cases 1, 2 or 3, the rows and columns are purely removed.
The dead pixels are filled with the mean over a neighbourhood.

A :code`slice` object for an object A of length L
defines a continuous portion of A such as
A[n_1], A[n_1+1], ..., A[n_2-1]
with n_1 < n_2. In such case, a slice object
definition is slice(n_1, n_2). If n_1 is 0, then
use slice(None, n_2). If n_2 is L
use slice(n_1, None). Last, if all the elements of
A should be kept, use slice(None).


	Parameters

	
	rows (slice object) – The range of rows to keep.


	cols (slice object) – The range of columns to keep.


	cols – The range of bands to keep.


	dpixels (list) – The positions of the dead pixels.













	
correct_fromfile(file, force_ndim=None)

	force_ndim aims at forcing dimension. Default is None for data
dimension.






	
abstract restore()

	Restores corrupted data.






	
plot()

	Plots the masked data.










	
class inpystem.signals.Stem2D(hsdata, scan=None, verbose=True)

	2D image STEM acquisition.

This defines a 2D STEM image with its associated sampling scan.


	Variables

	
	hsdata (hs BaseSignal) – The acquired STEM data hyperspy object.


	scan (Path object) – The sampling scan object associated with the data.









	
restore(method='interpolation', parameters={})

	Restores the acquisition.

It performs denoising in the case of full scan and performs
recontruction in case of partial sampling.










	
class inpystem.signals.Stem3D(hsdata, scan=None, verbose=True)

	3D image STEM acquisition.

This defines a 3D STEM image with its associated sampling scan.


	Variables

	
	hsdata (hs BaseSignal) – The acquired STEM data hyperspy object.


	scan (Path object) – The sampling scan object associated with the data.









	
restore(method='interpolation', parameters={}, PCA_transform=True, PCA_th='auto')

	Restores the acquisition.

It performs denoising in the case of full scan and performs
recontruction in case of partial sampling.


	Parameters

	
	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.













	
plot_sum()

	Shows the sum of the data along the last axis.






	
plot_as2D()

	Implements the HypersSpy tool to visualize the image for a
given band.






	
plot_as1D()

	Implements the HypersSpy tool to visualize the spectrum for
a given pixel.






	
plot_roi()

	Implements the Hyperspy tool to analyse regions of interest.
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dev module

This module defines the basic stem acquisitions objects used for processing.
These objects are:


	The 3D spectrum-image,


	The 2D HAADF image,





	
class inpystem.dev.AbstractDev(key, data, mask=None, sigma=None, seed=None, normalize=True, verbose=True)

	Abstract Dev acquisition class.

This is an abstract class, which mean you can not instantiate such
object.

It defines the structure for a Dev acquisition object.


	key: str
	1-word description of the Dev2D image.



	data: (m,n) or (m, n, l) numpy array
	The Dev2D image data before the noise step.
Its dimension is (m,n).



	ndata: (m,n) or (m, n, l) numpy array
	The noised Dev2D image.
If snr is None, ndata is None.
Its dimension is (m,n).



	sigma: float
	The noise standard deviation.



	seed: optional, int
	The random noise matrix seed.



	normalize: bool
	If :code:normalize` is True, the data will be centered
and normalize before the corruption steps.



	mean_std: None, 2-tuple
	It stores the data mean and std in case normalize is True.



	verbose: bool
	If True, information will be displayed.
Default is True.






	
__init__(key, data, mask=None, sigma=None, seed=None, normalize=True, verbose=True)

	AbstractDev constructor.


	Parameters

	
	key (str) – 1-word description of the Dev2D image.
Generally, it’s common to the stem acquisition object.


	data ((m, n) or (m, n, l) numpy array) – The noise-free image data.


	mask ((m, n) numpy array) – The sampling mask.


	sigma (optional, None, float) – The desired standard deviation used to model noise.
Dafault is None for no additional noise.


	seed (optional, None, int) – The random noise matrix seed.
Dafault is None for no seed initialization.


	normalize (optional, bool) – If :code:normalize` is True, the data will be centered
and normalize before the corruption steps.
Default is True.


	verbose (optional, bool) – If True, information will be displayed.
Default is True.













	
property seed

	seed property getter.






	
property sigma

	sigma property getter.






	
set_ndata()

	Constructs the noised data.

It is also used to draw a new noise matrix.










	
class inpystem.dev.Dev2D(key, hsdata, scan=None, modif_file=None, sigma=None, seed=None, normalize=True, verbose=True)

	Dev2D Class.


	Variables

	
	key (str) – 1-word description of the Dev2D image.


	hsdata (Signal2D hyperspy data) – The hyperspy Signal2D image.
Its dimension is denoted (m,n).
This is used to communicate with the parrent class.


	data ((m,n) numpy array) – The Dev2D image data before the noise step.
Its dimension is (m,n).


	ndata ((m,n) numpy array) – The noised Dev2D image.
If snr is None, ndata is None.
Its dimension is (m,n).


	scan (optional, Scan object) – The sampling scan object associated with the data.
Default is None for full sampling.


	sigma (float) – The noise standard deviation.


	seed (optional, int) – The random noise matrix seed.


	normalize (bool) – If :code:normalize` is True, the data will be centered
and normalize before the corruption steps.


	mean_std (None, 2-tuple) – It stores the data mean and std in case normalize is True.


	verbose (bool) – If True, information will be displayed.
Default is True.









	
__init__(key, hsdata, scan=None, modif_file=None, sigma=None, seed=None, normalize=True, verbose=True)

	SpectrumImage constructor.


	Parameters

	
	key (str) – 1-word description of the Dev2D image.
Generally, it’s common to the stem acquisition object.


	hsdata (Signal2D hyperspy data) – The noise-free Dev2D image data.
Its dimension is denoted (m,n).


	scan (optional, None, Scan object) – The sampling scan object associated with the data.
Default is None for full sampling.


	modif_file (optional, None, str) – A .conf configuration file to remove rows, columns or dead
pixels. Default is None for no modification.


	sigma (optional, None, float) – The desired standard deviation used to model noise.
Dafault is None for no additional noise.


	seed (optional, None, int) – The random noise matrix seed.
Dafault is None for no seed initialization.


	normalize (optional, bool) – If :code:normalize` is True, the data will be centered
and normalize before the corruption steps.
Default is True.


	verbose (optional, bool) – If True, information will be displayed.
Default is True.













	
restore(method='interpolation', parameters={}, verbose=None)

	




	
plot(noised=False)

	Plots the haadf image.


	Parameters

	noised (optional, bool) – If True, the noised data is used.
If False, the noise-free data is shown.
Default is False.














	
class inpystem.dev.Dev3D(key, hsdata, scan=None, modif_file=None, sigma=None, seed=None, normalize=True, PCA_transform=False, PCA_th='auto', verbose=True)

	Dev3D Class


	Variables

	
	key (str) – 1-word description of the Dev3D.


	hsdata (Signal1D hyperspy data) – The hyperspy Signal2D image.
Its dimension is denoted (m,n).
This is used to communicate with the parrent class.


	data ((m,n,l) numpy array) – The Dev3D data before the noise step.
Its dimension is (m,n,l).


	ndata ((m,n,l) numpy array) – The noised Dev3D data.
If snr is None, ndata is None. Its dimension is (m,n,l).


	snr (optional, float) – The desired snr used for the noising step.


	sigma (float) – The noise standard deviation.


	seed (optional, int) – The random noise matrix seed.


	normalize (bool) – If normalize is True, the data will be centered and normalize
before the corruption steps.


	PCA_transform (bool) – If PCA_transformed is True, a PCA transformation has
been applied to the data.


	PCA_info (None, dictionary) – If PCA_transformed is True, PCA_info contains informations about
the reduction. Otherwise, it is None.


	PCA_operator (PcaHandler) – The PCA operator.


	verbose (bool) – If True, information will be displayed.
Default is True.









	
__init__(key, hsdata, scan=None, modif_file=None, sigma=None, seed=None, normalize=True, PCA_transform=False, PCA_th='auto', verbose=True)

	Dev3D __init__ function.


	Parameters

	
	key (str) – 1-word description of the Dev3D image.
Generally, it’s common to the stem acquisition object.


	hsdata (Signal1D hyperspy data) – The noise-free Dev3D image data.
Its dimension is denoted (m,n, l).


	scan (optional, None, Scan object) – The sampling scan object associated with the data.
Default is None for full sampling.


	modif_file (optional, None, str) – A .conf configuration file to remove rows, columns or dead
pixels. Default is None for no modification.


	sigma (optional, None, float) – The desired standard deviation used to model noise.
Dafault is None for no additional noise.


	seed (optional, None, int) – The random noise matrix seed.
Dafault is None for no seed initialization.


	normalize (optional, bool) – If :code:normalize` is True, the data will be centered
and normalize before the corruption steps.
Default is True.


	PCA_transform (optional, bool) – If PCA_transformed is True, a PCA transformation is applied
to the data.
Default is False.


	PCA_th (optional, str, int) – The desired data dimension after dimension reduction.
Possible values are:


	’auto’ for automatic choice,


	’max’ for maximum value


	an int value for user value.




Default is ‘auto’.




	verbose (optional, bool) – If True, information will be displayed.
Default is True.













	
direct_transform(data)

	Applies the Dev3D PCA transformation and normalization
steps to data.


	Parameters

	data ((m, n, l) numpy array, hs image) – Data whose shape is the same as self.data.










	
inverse_transform(data)

	Applies the Dev3D PCA inverse transformation and
inverse normalization steps to spim.


	Parameters

	data ((m, n, l) numpy array, hs image) – Data whose shape is the same as self.data.










	
restore(method='interpolation', parameters={}, PCA_transform=None, PCA_th='auto', verbose=None)

	




	
show_sum(noised=False)

	Shows the sum of the data along the last axis.


	Parameters

	noised (optional, bool) – If True, the noised data is used.
If False, the noise-free data is shown.
Default is False.










	
plot_as2D(noised=False)

	Implements the HypersSpy tool to visualize the image for a given band.


	Parameters

	noised (optional, bool) – If True, the noised data is used.
If False, the noise-free data is shown.
Default is False.










	
plot_as1D(noised=False)

	Implements the HypersSpy tool to visualize the spectrum for a given pixel.


	Parameters

	noised (optional, bool) – If True, the noised data is used.
If False, the noise-free data is shown.
Default is False.










	
plot_roi(noised=False)

	Implements the Hyperspy tool to analyse regions of interest.


	Parameters

	noised (optional, bool) – If True, the noised data is used.
If False, the noise-free data is shown.
Default is False.
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dataset module

This module defines important tools to import data from dataset.


Data path functions


	
inpystem.dataset.read_data_path()

	Read the saved data folder path.

The inpystem library proposes to store all data in a particular
directory with associated configuration files. This folder
is saved in inpystem. To access to this folder path, use this
function.

If no data path is saved, the function returns None. Else, the
path is returned.


	Returns

	None is returned if no path is saved. Else, the data path
is returned.



	Return type

	None, str










	
inpystem.dataset.set_data_path(path)

	Sets the saved data folder path.

The inpystem library proposes to store all data in a particular
directory with associated configuration files. This folder
is saved in inpystem. To set to this folder path, use this
function.

A boolean is returned to confirm that the change is effective.


	Parameters

	path (str) – The desired data path.



	Returns

	If the data path has really been changed, the function
returns True. Else, it returns False.



	Return type

	bool












Load functions


	
inpystem.dataset.load_file(file, ndim, scan_ratio=None, scan_seed=None, dev=None, verbose=True)

	This function loads a STEM acquisition based on a configuration
.conf file path.

The number of dimensions ndim should also be given.

The Path is generated from a scan file given in the configuration
file or is randomly drawn. Whatever the case, the Scan object
ratio property can be set through the scan_ratio
argument. Additionally, in the case where no file is provided for
the scan pattern, use the scan_seed argument to have
reproductible data.

The function allows the user to ask for development data by setting
the dev argument. If dev is None, then the usual
Stem2D and Stem3D classes are returned. If dev is a
dictionary, then Dev2D and Dev3D classes are returned. This
dictionary could contain additional class arguments such as:


	snr, seed and normalized for Dev2D,


	snr, seed, normalized, PCA_transformed and PCA_th for Dev3D.





	Parameters

	
	file (str) – The configuration file path.


	ndim (int) – The data dimension. Should be 2 or 3.


	scan_ratio (optional, None, float) – The Path object ratio. Default is None for full sampling.


	scan_seed (int) – The seed in case of random scan initialization.
Default is None for random seed.


	dev (optional, None, dictionary) – This arguments allows the user to ask for development data.
If this is None, usual data is returned. If this argument is
a dictionary, then development data will be returned and the
dictionary will be given to the data contructors.
Default is None for usual data.


	verbose (optional, bool) – If True, information will be sent to standard output..
Default is True.






	Returns

	The inpystem data.



	Return type

	Stem2D, Stem3D, Dev2D, Dev3D






Todo

Maybe enable PCA_th in config file for 3D data.








	
inpystem.dataset.load_key(key, ndim, scan_ratio=None, scan_seed=None, dev=None, verbose=True)

	This function loads a STEM acquisition based on a key.

A key is a string which can be:


	an example data name,


	the name of some data located in the inpystem data path (which is
defined with the inpystem.dataset.set_data_path()
function).




The key should always be the name of the configuration file without
the suffix (.conf). As an example, if a configuration file located
in the data folder is named my-sample.conf, then its data could be
loaded with the my-sample key.

The number of dimensions ndim should also be given.

The Path is generated from a scan file given in the configuration
file or is randomly drawn. Whatever the case, the Scan object
ratio property can be set through the scan_ratio
argument. Additionally, in the case where no file is provided for
the scan pattern, use the scan_seed argument to have
reproductible data.

The function allows the user to ask for development data by setting
the dev argument. If dev is None, then the usual
Stem2D and Stem3D classes are returned. If dev is a
dictionary, then Dev2D and Dev3D classes are returned. This
dictionary could contain additional class arguments such as:


	snr, seed, normalized and verbose for Dev2D,


	snr, seed, normalized, PCA_transformed, PCA_th and verbose for
Dev3D.




This function only searches for the configuration file to use the
load_file function afterwards.


	Parameters

	
	key (str) – The data key.


	ndim (int) – The data dimension. Should be 2 or 3.


	scan_ratio (optional, None, float) – The Path object ratio. Default is None for full sampling.


	scan_seed (int) – The seed in case of random scan initialization.
Default is None for random seed.


	dev (optional, None, dictionary) – This arguments allows the user to ask for development data.
If this is None, usual data is returned. If this argument is
a dictionary, then development data will be returned and the
dictionary will be given to the data contructors.
Default is None for usual data.


	verbose (optional, bool) – If True, information will be sent to standard output..
Default is True.






	Returns

	The inpystem data.



	Return type

	Stem2D, Stem3D, Dev2D, Dev3D
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inpystem.tools subpackage

This introduces some tools for inpystem.


Submodules:


	inpystem.tools.PCA module

	inpystem.tools.FISTA module

	inpystem.tools.matlab_interface module

	inpystem.tools.dct module

	inpystem.tools.sec2str module

	inpystem.tools.metrics module

	inpystem.tools.misc module
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inpystem.tools.PCA module

This module implements tools to perform PCA transformation.

The main element is the PcaHandler class which is a user interface.
It performs direct and inverse PCA transformation for 3D data.

Dimension_Reduction is the background function which performs PCA
while the EigenEstimate function improves the estimation of PCA
eigenvalues.


The PcaHandler interface


	
class inpystem.tools.PCA.PcaHandler(Y, mask=None, PCA_transform=True, PCA_th='auto', verbose=True)

	Interface to perform PCA.

The PCA is applied at class initialization based on the input data.
This same operation can be applied afterward to other data using the
direct and inverse methods.


	Variables

	
	Y ((m, n, l) numpy array) – Multi-band data.


	Y_PCA ((m, n, PCA_th) numpy array) – The data in PCA space.


	mask (optional, (m, n) numpy array) – Spatial sampling mask.
Default is full sampling.


	PCA_transform (optional, bool) – Flag that sets if PCA should really be applied. This is useful
in soma cases where PCA has already been applied.
Default is True.


	verbose (optional, bool) – If True, information is sent to output.


	H ((l, PCA_th) numpy array) – The subspace base.


	Ym ((m, n, l) numpy array) – Matrix whose spectra are all composed of the data spectral mean.


	PCA_th (int) – The estimated data dimension.


	InfoOut (dict) – The dictionary contaning additional information about the reduction.
See Note.









Note

The InfoOut dictionary containg the thee following keys:


	‘H’ which is the base of the reduced subspace.
Its shape is (l, PCA_th) where PCA_th is the estimated data
dimension.


	‘d’ which is the evolution of the PCA-eigenvalues after estimation.


	‘PCA_th’ which is the estimated data dimension.


	‘sigma’ which is the estimated Gaussian noise standard deviation.


	‘Ym’ which is a (m, n, l) numpy array where the data mean over bands
is repeated for each spatial location.







	
__init__(Y, mask=None, PCA_transform=True, PCA_th='auto', verbose=True)

	PcaHandler constructor.


	Parameters

	
	Y ((m, n, l) numpy array) – Multi-band data.


	mask ((m, n) numpy array) – Spatial sampling mask.


	PCA_transform (optional, bool) – Flag that sets if PCA should really be applied. This is useful
in soma cases where PCA has already been applied.
Default is True.


	verbose (optional, bool) – If True, information is sent to output.













	
direct(X=None)

	Performs direct PCA transformation.

The input X array can be data to project into the PCA subspace
or None. If input is None (which is default), the output will be
simply self.Y_PCA.


Caution

The input data to transform should have the same shape as the Y
initial data.




	Parameters

	X ((m, n, l) numpy array) – The data to transform into PCA space.



	Returns

	Multi-band data in reduced space.



	Return type

	(m, n, PCA_th) numpy array










	
inverse(X_PCA)

	Performs inverse PCA transformation.


Caution

The input data to transform should have the same shape as the
self.Y_PCA transformed data.




	Parameters

	X_PCA ((m, n, PCA_th) numpy array) – The data to transform into data space.



	Returns

	Multi-band data after inverse transformation.



	Return type

	(m, n, l) numpy array
















Backgroud functions


	
inpystem.tools.PCA.Dimension_Reduction(Y, mask=None, PCA_th='auto', verbose=True)

	Reduces the dimension of a multi-band image.


	Parameters

	
	Y ((m, n, l) numpy array) – The multi-band image where the last axis is the spectral one.


	mask (optional, (m, n) numpy array) – The spatial sampling mask filled with True where pixels are sampled.
This is used to remove correctly the data mean.
Default if a matrix full of True.


	PCA_th (optional, str, int) – The PCA threshold.
‘auto’ for automatic estimation.
‘max’ to keep all components.
An interger to choose the threshold.
In case there are less samples (N) than the data dimension (l),
thi sparameter is overridded to keep a threshold of N-1.


	verbose (optional, bool) – Prints output if True. Default is True.






	Returns

	
	(m, n, PCA_th) numpy array – The data in the reduced subspace.
Its shape is (m, n, PCA_th) where PCA_th is the estimated data
dimension.


	dict – The dictionary contaning additional information about the reduction.
See Note.











Note

The InfoOut dictionary containg the thee following keys:


	‘H’ which is the base of the reduced subspace.
Its shape is (l, PCA_th) where PCA_th is the estimated data
dimension.


	‘d’ which is the evolution of the PCA-eigenvalues after estimation.


	‘PCA_th’ which is the estimated data dimension.


	‘sigma’ which is the estimated Gaussian noise standard deviation.


	‘Ym’ which is a (m, n, l) numpy array where the data mean over bands
is repeated for each spatial location.











	
inpystem.tools.PCA.EigenEstimate(l, Ns)

	Computes an estimate of the covariance eigenvalues given the sample
covariance eigenvalues. The Stein estimator coupled with isotonic
regression has been used here.

For more information, have a look at:



	

	MESTRE, Xavier. Improved estimation of eigenvalues and
eigenvectors of covariance matrices using their sample
estimates. IEEE Transactions on Information Theory, 2008,
vol. 54, no 11, p. 5113-5129.s








	Parameters

	
	l (numpy array) – Sample eigenvalues


	Ns (int) – Number of observations






	Returns

	
	numpy array – Estimated covariance matrix eigenvalues.


	float – Estimated Gaussian noise standard deviation.


	int – Estimated dimension of the signal subspace.
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inpystem.tools.FISTA module

This module implements interfacing tools for the FISTA algorithm.

For further informations about the FISTA algorithm, have a look at 1.


	1

	BECK, Amir et TEBOULLE, Marc. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences,
2009, vol. 2, no 1, p. 183-202.






	
class inpystem.tools.FISTA.FISTA(f, df, L, g, pg, shape, Nit=None, init=None, verbose=True)

	Fast Iterative Shrinkage-Thresholding Algorithm implementation.


	Variables

	
	f (function) – \(C^{1,1}\) convex function.


	df (function) – derivative function of f.


	L (float) – Lipshitz contant of f.


	g (function) – Non-smooth function.


	pg (function) – g poximal operator.


	shape (tuple) – The data shape.


	Nit (None, int) – Number of iteration.
If None, the iterations will stop as soon as the functional
no longer evolve.
Default is None.


	init (numpy array) – Init point which shape is the same as the data.
If None, a random initailization is drawn.
Default is None.


	verbose (bool) – If True, process informations are sent to the output.
Default is True.


	Nit_max (int) – Maximum number of iterations.


	tau (float) – Descent step.


	E (numpy array) – Functional evolution across iterations.


	lim (float) – Controlls the stop condition in case Nit is None.
The smallest lim, the more iterations before stopping.
lim is usually 1e-4.









	
__init__(f, df, L, g, pg, shape, Nit=None, init=None, verbose=True)

	Initialization function for FISTA.


	Parameters

	
	f (function) – \(C^{1,1}\) convex function.


	df (function) – derivative function of f.


	L (float) – Lipshitz contant of f.


	g (function) – Non-smooth function.


	pg (function) – g poximal operator.


	shape (tuple) – The data shape.


	Nit (None, int) – Number of iteration.
If None, the iterations will stop as soon as the functional
no longer evolve.
Default is None.


	init (numpy array) – Init point which shape is the same as the data.
If None, a random initailization is drawn.
Default is None.


	verbose (bool) – If True, process informations are sent to the output.
Default is True.













	
StopCritera(n)

	This function computes a critera that informs about the algorithm
convergence at step n.


	Parameters

	n (int) – Current step



	Returns

	Value of the critera.



	Return type

	float










	
StopTest(n)

	This function choose if iterations should be stopped at step n.
If Nit is not None, it returns True as long as n is smaller than Nit.
If Nit is None, it returns True as long as the functional is evolving
fast.


	Parameters

	n (int) – Current step.



	Returns

	Should the iterations go on ?



	Return type

	bool










	
execute()

	Method that executes the FISTA algorithm.


	Returns

	
	numpy array – The optimum of the optimization problem.


	dict – Extra informations about convergence.











Note

Infos in output dictionary:


	E: Evolution of the functional along the iterations.


	time: Execution time.
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inpystem.tools.matlab_interface module

This module defines an interface to run matlab codes from python.


	
inpystem.tools.matlab_interface.matlab_interface(program, dataDico)

	Interfaces a matlab code with python3.

The functions needs a matlab program to run and input data
to be given to the matlab program.

The input data should be given in dictionary format where keys are
the matlab variable names and values are the variable data.


	Parameters

	
	program (str, Path object) – The program path.


	dataDico (dict) – The dico containing the data to give to the program.






	Returns

	The data returned by the program.



	Return type

	dict






Note

A matlab command matlab should be accessible in the command line
to make this code work.

If this does not work, please be sure the PATH variable is perfecty
set. For exemple, please add this to your .bashrc for Linux Users:


.bashrc

  export PATH:$PATH:/path/to/matlab/bin







and for Windows users, please have a search about how to add a
location into your path (this is a graphical task).
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inpystem.tools.dct module

This module defines some functions related to DCT decomposition including:


	direct and inverse normalized 2D DCT transform,


	direct and inverse band-by-band DCT transform for multi-band data.





2D transformations


	
inpystem.tools.dct.dct2d(a)

	Computes the 2D Normalized DCT-II.


	Parameters

	X ((m, n) numpy array) – 2D image.



	Returns

	DCT coefficient matrix.



	Return type

	(m, n) numpy array










	
inpystem.tools.dct.idct2d(a)

	Computes the 2D Normalized Inverse DCT-II.


	Parameters

	A ((m, n) numpy array) – DCT coefficient matrix



	Returns

	2D image.



	Return type

	(m, n) numpy array












Band-by-band transformations


	
inpystem.tools.dct.dct2d_bb(x, shape=None)

	Computes the band-by-band 2D Normalized DCT-II

If the input X is a 3D data cube, the 2D dct will be computed for each 2D
images staked along the 2nd axis.


	Parameters

	
	X ((l, m*n) or (m, n, l) numpy array) – 2D or 3D multi-band data.
If the data has 3 dimensions, the last axis is for spetra.
If the data is 2D, the first axis is for spectra.


	shape (optional, (m, n, l) tuple) – This is the data shape. This parameter is required only if input data
are 2D.






	Returns

	DCT coefficient matrix.



	Return type

	(l, m*n) or (m, n, l) numpy array










	
inpystem.tools.dct.idct2d_bb(a, shape=None)

	Computes the band-by-band inverse 2D Normalized DCT-II

If the input a is a 3D data cube, the 2D dct will be computed for each 2D
images staked along the 2nd axis.


	Parameters

	
	A ((l, m*n) or (m, n, l) numpy array) – 2D or 3D multi-band data DCT decomposition.
If the data has 3 dimensions, the last axis is for spetra.
If the data is 2D, the first axis is for spectra.


	shape (optional, (m, n, l) tuple) – This is the data shape. This parameter is required only if input data
are 2D.






	Returns

	The image matrix.



	Return type

	(l, m*n) or (m, n, l) numpy array
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inpystem.tools.sec2str module

This small module only contain sec2str, which is a function to display
time in human-readable format.


	
inpystem.tools.sec2str.sec2str(t)

	Returns a human-readable time str from a duration in s.


	Parameters

	t (float) – Duration in seconds.



	Returns

	Human-readable time str.



	Return type

	str





Example

>>> from inpystem.tools.sec2str import sec2str
>>> sec2str(5.2056)
5.21s
>>> sec2str(3905)
'1h 5m 5s'
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inpystem.tools.metrics module

This module contains several metric functions.


	
inpystem.tools.metrics.SNR(xhat, xref)

	Computes the SNR metric.


	Parameters

	
	xhat (numpy array) – The noised data.


	xref (numpy array) – The noise-free image.






	Returns

	The SNR value in dB.



	Return type

	float










	
inpystem.tools.metrics.NMSE(xhat, xref)

	Computes the normalized mean square metric.


	Parameters

	
	xhat (numpy array) – The noised data.


	xref (numpy array) – The noise-free image.






	Returns

	The NMSE value.



	Return type

	float










	
inpystem.tools.metrics.aSAD(xhat, xref)

	Computes the averaged Spectral Angle Distance metric.

The input data number of dimensions can be:


	1: the data are spectra,


	2: the data are matrices of shape (n, M),


	3: the data are matrices of shape (m, n, M)




where M is the spectrum size.


	Parameters

	
	xhat (numpy array) – The noised data.


	xref (numpy array) – The noise-free image.






	Returns

	The (mean) aSAD value.



	Return type

	float










	
inpystem.tools.metrics.SSIM(xhat, xref)

	Computes the structural similarity index.


	Parameters

	
	xhat (numpy array) – The noised data.


	xref (numpy array) – The noise-free image.






	Returns

	The (mean) SSIM value.



	Return type

	float
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inpystem.tools.misc module

This module defines some miscellaneous functions.


	
inpystem.tools.misc.toslice(text=None, length=None)

	Parses a string into a slice.

Input strings can be eg. ‘5:10’, ‘:10’, ‘1:’. Negative limits are
allowed only if the data length is given. In such case, input
strings can be e.g. ‘1:-10’. Last, an integer can be given alone
such as ‘1’ to select only the 1st element.

If no text not length is given, default slice is slice(None).


	Parameters

	
	text (optional, None, str) – The input text to parse.
Default is None.


	length (None, int) – The data length. This is not mendatory if no slice limit
is negative.
Dafault is None.






	Returns

	The parsed slice object.



	Return type

	slice
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inpystem.restore subpackage

This package implements a variety of reconstruction algorithms for 2D
as 3D data.

These methods include:


	interpolation methods that are known to be fast but with low-quality
results,


	regularized least-square methods which are a slower than interpolation
but with higher quality,


	dictionary-learning methods which are very efficient at the price of
long reconstruction procedures.





Submodules:


	inpystem.restore.interpolation module

	inpystem.restore.LS_2D module

	inpystem.restore.LS_3D module

	inpystem.restore.LS_CLS module

	inpystem.restore.DL_ITKrMM module

	inpystem.restore.DL_ITKrMM_matlab module

	inpystem.restore.DL_BPFA module









          

      

      

    

  

  
    
    inpystem.restore.interpolation module
    

    

    

    
 
  

    
      
          
            
  
inpystem.restore.interpolation module

This module implement the interpolate function which is an interface
between 2D as 3D data and the interpolation function of scipy.


	
inpystem.restore.interpolation.interpolate(Y, mask=None, method='nearest', PCA_transform=True, PCA_th='auto', verbose=True)

	Implements data interpolation.

Three interpolation methods are implemented: nearest neighbor,
linear interpolation and cubic interpolation.

Note that cubic interpolation is performed band-by-band in the case
of 3D data while other methods perform in 3D directly.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – Input data


	mask (optional, None, (m, n) numpy array) – Sampling mask. True for sampled pixel.
Default is None for full sampling.


	method (optional, 'nearest', 'linear' or 'cubic') – Interpolation method.
Default is ‘nearest’.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	verbose (optional, bool) – Indicates if information text is desired.
Default is True.






	Returns

	
	(m, n) or (m, n, l) numpy array – Interpolated data.


	float – Execution time (s).
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inpystem.restore.LS_2D module

This module gathers regularized least square restoration methods
adapted to 2D data.

The only method it implements for the moment is the L1-LS algorithm.


	
inpystem.restore.LS_2D.L1_LS(Y, Lambda, mask=None, init=None, Nit=None, verbose=True)

	L1-LS algorithm.

The L1-LS algorithm denoises or reconstructs an image possibly spatially
sub-sampled in the case of spatially sparse content in the DCT basis.
It is well adapted to periodic data.

This algorithms solves the folowing regularization problem:


\[\gdef \x {\mathbf{x}}
\gdef \y {\mathbf{y}}
\hat{\x} = \mathrm{arg}\min_{ \x\in\mathbb{R}^{m \times n} }
    \frac{1}{2} ||(\x-\y)\cdot \Phi||_F^2 +
    \lambda ||\x\Psi||_1\]

where \(\mathbf{y}\) are the corrupted data,  \(\Phi\) is a
subsampling operator and \(\Psi\) is a 2D DCT operator.


Caution

It is strongly recomended to remove the mean before reconstruction.
Otherwise, this value could be lost automaticaly by the algorithm in
case of powerful high frequencies.

In the same way, normalizing the data is a good practice to have
the parameter be low sensitive to data.

These two operations are implemented in this function.




	Parameters

	
	(m, n) numpy array (Y) – An image which mean has been removed.


	Lambda (float) – Regularization parameter.


	mask (optional, None, (m, n) numpy array) – A sampling mask which is True if the pixel is sampled.
Default is None for full sampling.


	init (optional, None, (m, n, l) numpy array) – The algorithm initialization.
Default is None for random initialization.


	Nit (optional, None, int) – Number of iteration in case of inpainting. If None, the iterations
will stop as soon as the functional no longer evolve.
Default is None.


	verbose (optional, bool) – Indicates if information text is desired.
Default is True.






	Returns

	
	(m, n) numpy array – The reconstructed/denoised image.


	dict – A dictionary containing some extra info











Note

Infos in output dictionary:


	E: In the case of partial reconstruction, the cost
function evolution over iterations.


	Gamma: The array of kept coefficients (order is
Fortran-style).


	nnz_ratio: the ratio Gamma.size/(m*n).
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inpystem.restore.LS_3D module

This module implements regularized least square restoration methods
adapted to 3D data.

The two methods it gathers are


	Smoothed SubSpace (3S) algorith,


	Smoothed Nuclear Norm (SNN) algorithm.





	
inpystem.restore.LS_3D.SSS(Y, Lambda, mask=None, PCA_transform=True, PCA_th='auto', PCA_info=None, scale=1, init=None, Nit=None, verbose=True)

	Smoothed SubSpace algorithm.

The 3S algorithm denoise or reconstructs a multi-band image possibly
spatially sub-sampled in the case of spatially smooth images. It is
well adapted to intermediate scale images.

This algorithm performs a PCA pre-processing operation to estimate:


	the data subspace basis \(\mathbf{H}\),


	the subspace dimension \(R\),


	the associated eigenvalues in decreasing order \(\mathbf{d}\),


	the noise level \(\hat{\sigma}\).




After this estimation step, the algorithm solves the folowing
regularization problem in the PCA space:


\[\gdef \S {\mathbf{S}}
\gdef \Y {\mathbf{Y}}
\gdef \H {\mathbf{H}}
\gdef \I {\mathcal{I}}

\begin{aligned}
\hat{\S} 
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inpystem.restore.LS_CLS module

This module implements regularized least square restoration methods
adapted to 3D data.

The two methods it gathers are


	Cosine Least Square (CLS) algorith,


	Post-LS Cosine Least Square (Post_LS_CLS) algorithm.





	
inpystem.restore.LS_CLS.CLS(Y, Lambda, mask=None, PCA_transform=True, PCA_th='auto', init=None, Nit=None, verbose=True)

	Cosine Least Square algorithm

The CLS algorithm denoises or reconstructs a multi-band image possibly
spatially sub-sampled in the case of spatially sparse content in the DCT
basis. It is well adapted to periodic data.

This algorithm solves the folowing optimization problem:


\[\gdef \X {\mathbf{X}}
\gdef \Y {\mathbf{Y}}
\gdef \H {\mathbf{H}}
\gdef \I {\mathcal{I}}

\hat{\X} = \underset{\X\in\mathbb{R}^{m \times n \times B}}{\arg\min}
    \frac{1}{2}||\Y_\I - \X_\I||_\mathrm{F}^2 +
    \lambda ||\X \Psi||_{2, 1}\]

where \(\mathbf{Y}\) are the corrupted data,  \(\mathbf{D}\)
is a spatial finite difference operator and \(\mathcal{I}\) is
the set of all sampled pixels.

This algorithm can perform a PCA pre-processing operation to estimate:


	the data subspace basis \(\mathbf{H}\),


	the subspace dimension \(R\).




This is particularly usefull to reduce the data dimension and the
execution time and to impose a data low-rank property.


Caution

It is strongly recomended to perform PCA before running the
algorithm core. This operation is integrated in this function.

In case this pre-processing step has already been done, set the
PCA_transform parameter to False to disable the PCA step
included in the SSS function. If PCA_transform is set to False, the
PCA_info parameter is required.




	Parameters

	
	(m, n, l) numpy array (Y) – A 3D multi-band image.


	Lambda (float) – Regularization parameter.


	mask (optional, None, (m, n) numpy array) – A sampling mask which is True if the pixel is sampled.
Default is None for full sampling.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	init (optional, None, (m, n, l) numpy array) – The algorithm initialization.
Default is None for random initialization.


	Nit (optional, None, int) – Number of iteration in case of inpainting. If None, the iterations
will stop as soon as the functional no longer evolve.
Default is None.


	verbose (optional, bool) – Indicates if information text is desired.
Default is True.






	Returns

	
	(m, n, l) numpy array – The reconstructed/denoised multi-band image.


	dict – A dictionary containing some extra info











Note

Infos in output dictionary:


	E : In the case of partial reconstruction, the cost function
evolution over iterations.


	Gamma : The array of kept coefficients (order is Fortran-style)


	nnz_ratio : the ratio Gamma.size/(m*n)


	H: the basis of the chosen signal subspace











	
inpystem.restore.LS_CLS.Post_LS_CLS(Y, Lambda, mask=None, PCA_transform=True, PCA_th='auto', init=None, Nit=None, verbose=True)

	Post-Lasso CLS algorithm.

This algorithms consists in applying CLS to restore the data and
determine the data support in DCT basis. A post-least square
optimization is performed to reduce the coefficients bias.


	Parameters

	
	(m, n, l) numpy array (Y) – A 3D multi-band image.


	Lambda (float) – Regularization parameter.


	mask (optional, None, (m, n) numpy array) – A sampling mask which is True if the pixel is sampled.
Default is None for full sampling.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	init (optional, None, (m, n, l) numpy array) – The algorithm initialization.
Default is None for random initialization.


	Nit (optional, None, int) – Number of iteration in case of inpainting. If None, the iterations
will stop as soon as the functional no longer evolve.
Default is None.


	verbose (optional, bool) – Indicates if information text is desired.
Default is True.






	Returns

	
	(m, n, l) numpy array – The reconstructed/denoised multi-band image.


	tuple – A 2-tuple whose alements are the CLS and reffitting information
dictionaries.











Note

Infos in output dictionary:


	E_CLS : In the case of partial reconstruction, the cost
function evolution over iterations.


	E_post_ls : In the case of partial reconstruction, the
cost function evolution over iterations.


	Gamma : The array of kept coefficients
(order is Fortran-style)


	nnz_ratio : the ratio Gamma.size/(m*n)


	H: the basis of the chosen signal subspace
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inpystem.restore.DL_ITKrMM module

This module implements the ITKrMM algorithm.


The ITKrMM algorithm


	
inpystem.restore.DL_ITKrMM.ITKrMM(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True)

	ITKrMM restoration algorithm.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	mask (optional, None or (m, n) numpy array) – The acquisition mask.
Default is None for full sampling.


	P (optional, int) – The width (or height) of the patch.
Default is 5.


	K (optional, int) – The dictionary dimension.
Default is 128.


	L (optional, int) – The number of low rank components to learn.
Default is 1.


	S (optional, int) – The code sparsity level. Default is 20.


	Nit_lr (optional, int) – The number of iterations for the low rank estimation.
Default is 10.


	Nit (optional, int) – The number of iterations. Default is 40.


	init ((P**2, K+L) or (P**2*l, K+L) numpy array) – Initialization dictionary.


	CLS_init (optional, dico) – CLS initialization inofrmation. See Notes for details.
Default is None.


	xref (optional, (m, n) or (m, n, l) numpy array) – Reference image to compute error evolution.
Default is None for input Y data.


	verbose (optional, bool) – The verbose parameter. Default is True.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.






	Returns

	
	(m, n) or (m, n, l) numpy array – Restored data.


	dict – Aditional informations. See Notes.










Notes

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the init optional argument.

The output information keys are:


	time: Execution time in seconds.


	lrc: low rank component.


	dico: Estimated dictionary.


	E: Evolution of the error.











The wKSVD algorithm


	
inpystem.restore.DL_ITKrMM.wKSVD(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True)

	wKSVD restoration algorithm.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	mask (optional, None or (m, n) numpy array) – The acquisition mask.
Default is None for full sampling.


	P (optional, int) – The width (or height) of the patch.
Default is 5.


	K (optional, int) – The dictionary dimension.
Default is 128.


	L (optional, int) – The number of low rank components to learn.
Default is 1.


	S (optional, int) – The code sparsity level. Default is 20.


	Nit_lr (optional, int) – The number of iterations for the low rank estimation.
Default is 10.


	Nit (optional, int) – The number of iterations. Default is 40.


	init ((P**2, K+L) or (P**2*l, K+L) numpy array) – Initialization dictionary.


	CLS_init (optional, dico) – CLS initialization inofrmation. See Notes for details.
Default is None.


	xref (optional, (m, n) or (m, n, l) numpy array) – Reference image to compute error evolution.
Default is None for input Y data.


	verbose (optional, bool) – The verbose parameter. Default is True.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.






	Returns

	
	(m, n) or (m, n, l) numpy array – Restored data.


	dict – Aditional informations. See Notes.










Notes

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the init optional argument.

The output information keys are:


	time: Execution time in seconds.


	lrc: low rank component.


	dico: Estimated dictionary.


	E: Evolution of the error.











Patch manipulation functions


	
inpystem.restore.DL_ITKrMM.forward_patch_transform(ref, w)

	Transforms data from 2D/3D array to array whose shape is (w**2, N)
where w is the patch width and N is the number of patches.


	Parameters

	
	ref ((m, n) or (m, n, l) numpy array) – The input image.


	w (int) – The width (or height) of the patch.






	Returns

	data – The patches stacked version.
Its shape is (w**2, N) where N is the number of patches if ref is 2D or
(w**2*l, N) is ref is 3D.



	Return type

	(w**2, N) or (w**2*l, N) numpy array










	
inpystem.restore.DL_ITKrMM.inverse_patch_transform(data, shape)

	Transforms data from array of the form (w**2, N) or (w**2*l, N) where w
is the patch width, l is the number of bands (in the case of 3D data) and
N is the number of patches into 2D/3D array.


	Parameters

	
	data ((w**2, N) or (w**2*l, N) numpy array) – The input data.


	shape ((m, n) or (m, n, l)) – The image shape.






	Returns

	ref – The input image.



	Return type

	(m, n) or (m, n, l) numpy array












CLS initialization function


	
inpystem.restore.DL_ITKrMM.CLS_init(Y, Lambda, K=128, S=None, P=5, mask=None, PCA_transform=False, PCA_th='auto', init=None, verbose=True)

	Dictionary learning initialization based on CLS restoration algorithm.


	Parameters

	
	Y ((m, n, l)n umpy array) – A 3D multi-band image.


	Lambda (float) – Regularization parameter.


	K (optional, int) – The dictionary size.
Default is 128.


	S (optional, int) – The code sparsity.
Default is 0.1*P*l.


	P (optional, int) – The patch size.
Default is 5.


	mask (optional, None, (m, n) boolean numpy array) – A sampling mask which is True if the pixel is sampled and False
otherwise. Default is None for full sampling.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is False as it should be done in dico learning operator.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction. Possible values
are ‘auto’ for automatic choice, ‘max’ for maximum value and an int
value for user value.
Default is ‘auto’.


	init (optional, None, (m, n, l) numpy array) – The algorithm initialization.
Default is None for random initialization.


	verbose (optional, bool) – Indicates if information text is desired.
Default is True.






	Returns

	
	(K, l*P**2) numpy array – The dictionary for dictionary learning algorithm.


	(K, l*P**2) numpy array – The sparse code for dictionary learning algorithm.


	(m, n, l) numpy array – CLS restored array.


	dict – Dictionary containing some extra info











Note

Infos in output dictionary:


	E : In the case of partial reconstruction, the cost function
evolution over iterations.


	Gamma : The array of kept coefficients (order is Fortran-style)


	nnz_ratio : the ratio Gamma.size/(m*n)


	H: the basis of the chosen signal subspace













The dictionary learning interface


	
class inpystem.restore.DL_ITKrMM.Dico_Learning_Executer(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, PCA_transform=True, PCA_th='auto', verbose=True)

	Class to define execute dictionary learning algorithms.

The following class is a common code for most dictionary learning methods.
It performs the following tasks:


	reshapes the data in patch format,


	performs low-rank component estimation,


	starts the dictionary learning method,


	reshape output data,


	handle CLS initialization to speed-up computation.





	Variables

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	Y_PCA ((m, n) or (m, n, PCA_th) numpy array) – The input data in PCA space.
Its value is Y if Y is 2D.


	mask ((m, n) numpy array) – The acquisition mask.


	P (int) – The width (or height) of the patch.


	K (int) – The dictionary dimension. This dictionary is composed of L low-rank
components and K-L non-low-rank components.


	L (int) – The number of low rank components to learn.


	S (int) – The code sparsity level.


	Nit_lr (int) – The number of iterations for the low rank estimation.


	Nit (int) – The number of iterations.


	CLS_init (dico) – CLS initialization inofrmation.


	verbose (bool) – The verbose parameter. Default is True.


	mean_std (2-tuple) – Tuple of size 2 which contains the data mean and std.


	data ((N, D) numpy array) – The Y data in patch format. N (resp. D) is the number of voxels per
patch (resp. patches).


	mdata ((N, D) numpy array) – The mask in patch format. N (resp. D) is the number of voxels per
patch (resp. patches).


	init ((N, K-L) numpy array) – The low-rank estimation initialization in patch format. N is the
number of voxels per patch.


	init – The dictionary-learning initialization in patch format. N is the
number of voxels per patch.


	PCA_operator (PcaHandler object) – The PCA operator.









Note

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the CLS init optional argument.










The ITKrMM core


	
inpystem.restore.DL_ITKrMM.rec_lratom(data, masks=None, lrc=None, Nit=10, inatom=None, verbose=True)

	Recover new low rank atom equivalent to itkrmm with K = S = 1.


	Parameters

	
	data ((d, N) numpy array) – The (corrupted) training signals as its columns.


	masks ((d, N) numpy array) – Mask data as its columns.
masks(.,.) in {0,1}.
Default is masks = 1.


	lrc ((d, n) numpy array) – Orthobasis for already recovered low rank component.
Default is None.


	Nit (int) – Number of iterations.
Default is 10.


	inatom ((d, ) numpy array) – Initialisation that should be normalized.
Default is None for random.


	verbose (bool) – If verbose is True, information is sent to the output.
Default is True.






	Returns

	atom – Estimated low rank component.



	Return type

	(d, ) numpy array










	
inpystem.restore.DL_ITKrMM.OMPm(D, X, S, Masks=None)

	Masked OMP.

This is a modified version of OMP to account for corruptions in the signal.

Consider some input data \(\mathbf{X}\) (whose shape is (N, P) where N
is the number of signals) which are masked by \(\mathbf{M}\). Given an
input dictionary \(\mathbf{D}\) of shape (K, P), this algorithm returns
the optimal sparse \(\hat{\mathbf{A}}\) matrix such that:


\[\gdef \A {\mathbf{A}}
\gdef \M {\mathbf{M}}
\gdef \X {\mathbf{X}}
\gdef \D {\mathbf{D}}

\begin{aligned}
\hat{\A} 
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inpystem.restore.DL_ITKrMM_matlab module

This module implements the ITKrMM algorithm.


The ITKrMM algorithm


	
inpystem.restore.DL_ITKrMM_matlab.ITKrMM_matlab(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, save_it=False, PCA_transform=True, PCA_th='auto', verbose=True)

	ITKrMM restoration algorithm with matlab code.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	mask (optional, None, (m, n) numpy array) – The acquisition mask.
Default is None for full sampling.


	P (optional, int) – The width (or height) of the patch.
Default is 5.


	K (optional, int) – The dictionary dimension.
Default is 2*P**2-1.


	L (optional, int) – The number of low rank components to learn.
Default is 1.


	S (optional, int) – The code sparsity level. Default is P-L.
This should be lower than K-L.


	Nit_lr (optional, int) – The number of iterations for the low rank estimation.
Default is 10.


	Nit (optional, int) – The number of iterations. Default is 40.


	init_lr (optional, (N, L) numpy array) – Initialization for low-rank component. N is the number of voxel in
a patch. Default is random initialization.


	init (optional, (N, K-L) numpy array) – Initialization for dictionary learning. N is the number of voxel
in a patch. Default is random initialization.


	CLS_init (optional, dico) – CLS initialization infrmation. See Note for details.
Default is None.


	save_it (optional, bool) – Particular parameter to save estimated reconstruction inside
learning loops. This is recomended to stay false.
Default is False.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	verbose (bool) – The verbose parameter. Default is True.






	Returns

	
	(m, n) or (m, n, l) numpy array – Restored data.


	dict – Aditional informations. See Notes.










Notes

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the CLS init optional argument.

The output information keys are:


	time: Execution time in seconds.


	lrc: low rank component.


	dico: Estimated dictionary.


	E: Evolution of the error.











The wKSVD algorithm


	
inpystem.restore.DL_ITKrMM_matlab.wKSVD_matlab(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, save_it=False, PCA_transform=True, PCA_th='auto', verbose=True)

	wKSVD restoration algorithm with Matlab code.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	mask (optional, None, (m, n) numpy array) – The acquisition mask.
Default is None for full sampling.


	P (optional, int) – The width (or height) of the patch.
Default is 5.


	K (optional, int) – The dictionary dimension.
Default is 2*P**2-1.


	L (optional, int) – The number of low rank components to learn.
Default is 1.


	S (optional, int) – The code sparsity level. Default is P-L.
This should be lower than K-L.


	Nit_lr (optional, int) – The number of iterations for the low rank estimation.
Default is 10.


	Nit (optional, int) – The number of iterations. Default is 40.


	init_lr (optional, (N, L) numpy array) – Initialization for low-rank component. N is the number of voxel in
a patch. Default is random initialization.


	init (optional, (N, K-L) numpy array) – Initialization for dictionary learning. N is the number of voxel
in a patch. Default is random initialization.


	CLS_init (optional, dico) – CLS initialization infrmation. See Note for details.
Default is None.


	save_it (optional, bool) – Particular parameter to save estimated reconstruction inside
learning loops. This is recomended to stay false.
Default is False.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	verbose (bool) – The verbose parameter. Default is True.






	Returns

	
	(m, n) or (m, n, l) numpy array – Restored data.


	dict – Aditional informations. See Notes.










Notes

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the CLS init optional argument.

The output information keys are:


	time: Execution time in seconds.


	lrc: low rank component.


	dico: Estimated dictionary.


	E: Evolution of the error.











The dictionary learning interface


	
class inpystem.restore.DL_ITKrMM_matlab.Matlab_Dico_Learning_Executer(Y, mask=None, P=5, K=None, L=1, S=None, Nit_lr=10, Nit=40, init_lr=None, init=None, CLS_init=None, save_it=False, PCA_transform=True, PCA_th='auto', verbose=True)

	Class to define and execute dictionary learning algorithms with
matlab interface.

The following class is a common code for most dictionary learning
methods.
It performs the following tasks:


	reshapes the data in patch format,


	performs low-rank component estimation,


	starts the dictionary learning method,


	reshape output data,


	handle CLS initialization to speed-up computation.





	Variables

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	Y_PCA ((m, n) or (m, n, PCA_th) numpy array) – The input data in PCA space.
Its value is Y if Y is 2D.


	mask ((m, n) numpy array) – The acquisition mask.


	P (int) – The width (or height) of the patch.


	K (int) – The dictionary dimension. This dictionary is composed of L low-rank
components and K-L non-low-rank components.


	L (int) – The number of low rank components to learn.


	S (int) – The code sparsity level.


	Nit_lr (int) – The number of iterations for the low rank estimation.


	Nit (int) – The number of iterations.


	CLS_init (dico) – CLS initialization inofrmation.


	save_it (bool) – Particular parameter to save estimated reconstruction inside
learning loops. This is recomended to stay false.


	verbose (bool) – The verbose parameter. Default is True.


	mean_std (2-tuple) – Tuple of size 2 which contains the data mean and std.


	data ((N, D) numpy array) – The Y data in patch format. N (resp. D) is the number of voxels per
patch (resp. patches).


	mdata ((N, D) numpy array) – The mask in patch format. N (resp. D) is the number of voxels per
patch (resp. patches).


	init ((N, K-L) numpy array) – The low-rank estimation initialization in patch format. N is the
number of voxels per patch.


	init – The dictionary-learning initialization in patch format. N is the
number of voxels per patch.


	PCA_operator (PcaHandler object) – The PCA operator.









Note

The algorithm can be initialized with CLS as soon as
CLS_init is not None.  In this case, CLS_init
should be a dictionary containing the required Lambda
key and eventually the CLS init optional argument.













          

      

      

    

  

  
    
    inpystem.restore.DL_BPFA module
    

    

    

    
 
  

    
      
          
            
  
inpystem.restore.DL_BPFA module

This module implements the BPFA algorithm.


	
inpystem.restore.DL_BPFA.BPFA_matlab(Y, mask, P=5, Omega=1, K=128, Nit=100, step=1, PCA_transform=True, PCA_th='auto', verbose=True)

	Implements BPFA algorithm for python.

This function does not properly executes BPFA but it calls
the Matlab BPFA code.


	Parameters

	
	Y ((m, n) or (m, n, l) numpy array) – The input data.


	mask ((m, n) numpy array) – The acquisition mask.


	P (int) – The patch width.
Default is 5.


	Omega (int) – The Omega parameter.
Default is 1.


	K (int) – The dictionary dimension.
Default is 128.


	Nit (int) – The number of iterations.
Default is 100.


	step (int) – The distance between two consecutive patches.
Default is 1 for full overlap.


	PCA_transform (optional, bool) – Enables the PCA transformation if True, otherwise, no PCA
transformation is processed.
Default is True.


	PCA_th (optional, int, str) – The desired data dimension after dimension reduction.
Possible values are ‘auto’ for automatic choice, ‘max’ for maximum
value and an int value for user value.
Default is ‘auto’.


	verbose (bool) – The verbose parameter.
Default is True.






	Returns

	
	(m, n) or (m, n, l) numpy array – Restored data.


	dict – Aditional informations. See Notes.











Note

The output information keys are:


	time: Execution time in seconds.
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